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Abstract 

We examine whether a factor-based framework to construct the covariance matrix can enhance the 

performance of minimum-variance portfolios. We conduct a comprehensive comparative analysis of a 

wide range of factor models, which can differ based on the dimensionality reduction approach used to 

construct the latent factors and whether the covariance matrix is static or dynamic. The results indicate 

that factor models exhibit superior predictive accuracy compared to several covariance benchmarks, 

which can be attributed to the reduced degree of over predictions. Factor-based portfolios generate 

statistically significant outperformance with respect to standard deviation and Sharpe ratio relative to 

multiple portfolio benchmarks. After accounting for transaction costs strategies based on static 

covariance matrices outperform dynamic specifications in terms of risk-adjusted returns.  
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1. Introduction 

The classic mean-variance framework of Markowitz (1952) requires knowledge of the mean and the 

covariance matrix of the investment opportunity set, which are unknown quantities that need to be 

estimated. In practice, sample moments are commonly used to replace their true counterparts, which 

often carry considerable estimation risk, leading to suboptimal portfolios with extreme weights that 

fluctuate considerably over time and perform poorly out-of-sample (Broadie, 1993; Kan and Zhou, 

2007). Among the many approaches proposed to deal with the challenges surrounding the Markowitz 

portfolio optimization problem, Kolm, Tütüncü and Fabozzi (2014), include risk-based allocation 

approaches, which require a risk model but no return model. Therefore, we focus instead on minimum-

variance portfolios, which correspond to a risk averse investor who aims to minimize portfolio variance, 

without a need for estimates of expected returns. This framework is well motivated by Merton (1980), 

since it only requires estimates of the covariance matrix, which are often considered to be more accurate 

than estimates of the mean (Best and Grauer, 1991a,b; Chopra and Turner, 1993) and has been shown 

to outperform simpler benchmarks (see e.g., Chan, Karceski, and Lakonishok, 1999) and mean-variance 

portfolios (see e.g., Jagannathan and Ma, 2003). However, the covariance matrix estimates are still 

subject to estimation error (DeMiguel, Garlappi, Nogales and Uppal, 2009), which is exacerbated for 

larger portfolio sizes, where the asset covariances to be estimated increase with the number of assets. 

In this paper, we overcome the problem of covariance misspecification by imposing a factor 

structure on the covariance matrix.1 Factor models reduce the dimensionality of the problem by 

describing the dependence structure of 𝑁 asset returns using 𝐾 ≪ 𝑁 factors, which has the effect of 

reducing the number of parameters to be estimated. Factor models assume that asset returns are driven 

by a set of observed or latent factors typically constructed from a large number of variables using 

principal component analysis (PCA) and partial least squares (PLS). There is also a growing strand of 

literature that improves upon the traditional PCA estimates. For example, Kelly, Pruitt and Su (2019) 

propose instrumented PCA, where factors are latent, and the time-varying loadings depend on 

characteristics. Lettau and Pelger (2020) introduce risk-premia PCA, which identifies factors with small 

time-series variation that are useful in the cross-section of returns. Huang, Jiang, Li, Tong and Zhou 

(2022) suggest scaled PCA, which assigns greater weights to predictors with more forecasting power, 

by scaling each predictor with its slope on the response variable. These recent developments focus on 

forecasting the conditional mean or explaining the cross-section of asset returns. In contrast, we perform 

a comprehensive analysis of the ability of a variety of dimensionality reduction techniques and factor 

 
1Alternative solutions involve imposing short-selling constraints (Hui, Kwan and Lee, 1993; Jagannathan and Ma, 

2003), limiting turnover via norm constraints (DeMiguel, Garlappi, Nogales and Uppal, 2009) or penalizing the 

objective function (Olivares-Nadal and DeMiguel, 2018). Another approach uses either shrinkage estimators 

(Ledoit and Wolf, 2004; Ledoit and Wolf, 2017; Bodnar, Parolya and Schmid, 2018), which tend to shrink the 

covariance matrix towards a specific target covariance or sparse estimators that derive a regularized version of 

the precision matrix (Friedman, Hastie and Tibshirani, 2008). Using higher frequency data can also reduce 

estimation error (Jagannathan and Ma, 2003; Palczewski and Palczewski, 2014). 
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model specifications to accurately estimate the covariance matrix and whether they add value to 

minimum-variance portfolios. 

Furthermore, while factor models are commonly used in finance, there are fewer studies that 

explore their benefits in portfolio optimization and specifically minimum-variance portfolios. Green 

and Hollifield (1992) and Chan, Karceski and Lakonishok (1999) show that introducing a factor 

structure to the covariance matrix can improve portfolio performance. Moskowitz (2003) examined the 

covariance structure of returns with respect to various factors and finds that the size factor can better 

explain covariance risk, both in and out of sample, while the book-to-market factor exhibits a weaker 

association and the momentum factor appears unrelated to return second moments. The benefits of using 

the factor model-based approach to estimate the covariance matrix have also been investigated by Fan, 

Fan and Lv (2008) and Fan, Liao and Mincheva (2011) who propose covariance estimators for exact 

and approximate factor models respectively. More recently, De Nard, Ledoit and Wolf (2021), use a 

factor framework and evaluate portfolios for different estimates of the error covariance matrix. Factor 

models have also been used by Lassance and Vrins (2021) and Lassance, DeMiguel and Vrins (2022), 

who extract uncorrelated risk factors based on independent component analysis to improve risk-parity 

and higher-moment strategies.  

Latent factor models are appealing due to their capacity to combine information from a large 

number of variables in a simple and parsimonious way. Particularly, a drawback of PCA and PLS is 

that factor weights are non-zero, which leads to estimation difficulties in high dimensional settings. 

Another disadvantage of this framework is that it is confined to a linear relation between the variables. 

To address these issues, we apply a variety of dimensionality reduction methods from the machine 

learning literature to the estimation of factor-based covariance matrices in a portfolio allocation 

context.2 The statistical and economic value of a variety of machine learning algorithms in finance has 

been examined by Krauss, Do, and Huck (2017), who generate profitable trading signals based on a 

classification framework, and Gu, Kelly and Xiu (2020) who formulate a regression problem to measure 

asset risk premiums and find that nonlinear methods lead to the best performance.3 In contrast, our focus 

is on improving the estimates of factor-based covariance matrices through methods that produce 

modified latent factors with sparse weights, such that each latent factor is a linear combination of only 

a few of the original variables. In addition, we introduce non-linearities to the reduced representation 

of the variables, by constructing factors generated by autoencoders; a type of unsupervised neural 

network used for dimensionality reduction. Autoencoders have been employed in the recent literature 

 
2 Machine learning has been shown to be well suited to many theoretical and empirical problems in finance. A 

thorough survey of machine learning approaches used for optimization problems such as regression, classification, 

clustering, deep learning, and adversarial learning has been conducted by Gambella, Ghaddar and Naoum-Sawaya 

(2021). 
3 The asset universe of these studies is comprised of stocks, however, a comprehensive comparison of machine 

learning methodologies in terms of return prediction is provided by Bianchi, Büchner and Tamoni (2021), 

Sermpinis, Theofilatos, Karathanasopoulos, Georgopoulos and Dunis (2013), Wu, Chen, Yang and Tindall (2020) 

for bond, foreign exchange rate and hedge fund markets, respectively. 
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by Huck (2019) in portfolio management, while Gu, Kelly, and Xiu (2021) use autoencoders in an asset 

pricing setting. An additional contribution of this study is to conduct a systematic evaluation of static 

and dynamic specifications of the covariance matrix based on latent factors. Specifically, the structure 

of a dynamic covariance matrix can differ based on whether the factor loadings, the factor covariance 

matrix or the residual covariance matrix are allowed to vary over time.  

We first investigate the predictive accuracy of the factor-based covariance matrices, which in the 

baseline case are derived using monthly observations for the largest 100 stocks from the CRSP database 

for the period from 1960 to 2022. As the proxy for the true covariance matrix, we consider the sample 

estimator based on 12-month ahead daily data and rely on several loss functions for the evaluation of 

the results. We also compare the performance of the factor models to several covariance benchmarks 

frequently employed by the literature, which include the sample estimator, the linear (Ledoit and Wolf, 

2002) and non-linear (Ledoit and Wolf, 2017) shrinkage estimators and the Wishart stochastic 

covariance matrix (Moura, Santos and Ruiz, 2020). The results based on mean squared error and mean 

absolute error, which are symmetric loss functions, indicate that the majority of the factor-based 

covariance matrices outperform the covariance benchmarks, while according to two asymmetric loss 

functions the improved performance of the factor models is because they tend to overestimate the target 

covariance matrix less than the benchmarks. 

The evaluation of the performance of the minimum-variance portfolios is conducted over the 

same sample. Specifically, the factor models lead to portfolios that significantly outperform the equally 

weighted and value weighted portfolio benchmarks and economically outperform portfolios based on 

the alternative optimal portfolio benchmarks. The best-performing methods to generate the covariance 

matrix are unsupervised learning methods, which can lead to portfolios that exhibit 25% higher risk-

adjusted returns and 22% lower volatility than the equally weighted one or 10% and 4% respectively 

from the non-linear shrinkage estimator. Portfolios based on dimensionality reduction approaches also 

have weights that are smaller, vary less over time and are more diversified, than those based on the 

alternative covariance matrix benchmarks, with portfolios based on the static factor covariance 

specification and linear dimensionality reduction methods exhibiting lower turnover and thus reduced 

sensitivity to transaction costs. Overall, factor-based portfolios generate statistically significant 

outperformance after transaction costs with respect to standard deviation and Sharpe ratio relative to a 

series of benchmarks. When comparing the results across alternative specifications of the factor-based 

covariance matrix, the differences become less pronounced.  Approaches based on unsupervised 

learning methods that allow the loadings or the residual covariance matrix to vary over time yield lower 

portfolio risk. However, after transaction costs are taken into account, strategies based on static factor 

covariance matrices outperform the dynamic specifications in terms of Sharpe ratio, which aligns with 

the conclusion by DeMiguel, Nogales and Uppal (2014) that dynamic strategies outperform static 

strategies only for transaction costs below ten basis points. The performance of the latent factor 

portfolios is amplified during periods of high volatility. Finally, the factor-based portfolios continue to 
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outperform the equally weighted benchmark after increasing the number of assets, however, shrinkage 

estimators outperform factor-based estimators for a higher number of assets.  

The remainder of this study is organized as follows. Section 2 describes our refined approach for 

imposing a factor structure to the covariance matrix, which involves constructing factors based on 

dimensionality reduction methods that induce sparsity or introduce non-linearities and different 

specifications for the covariance matrix that allow its components to vary over time. Section 3 provides 

details on the data, sample splitting and the approach to hyperparameter tuning that is based on 

economically motivated criteria. Section 4 examines the predictive accuracy of the covariance matrices 

and the economic value and properties of the factor-based minimum-variance portfolios. Section 5 

concludes. 

2. Methodology  

In this section we introduce the methods for dimensionality reduction used to construct the latent 

factors, we then describe the different specifications under which the factor-based covariance matrices 

are estimated and finally, present the optimization framework used to derive the portfolios. 

2.1. Factor Models 

We consider models with factors that are latent quantities, which are derived from the data using 

dimensionality reduction techniques. When factors are latent, principal component analysis is a very 

common approach to reduce dimensionality. The studies of Chamberlain and Rothschild (1983) and 

Connor and Korajczyk (1988) are among the first to use latent factors in applications of the APT. A 

factor model for the returns of every asset, 𝑟𝑖,𝑡, with 𝑖 = 1, … , 𝑁 assets, 𝑡 = 1, … , 𝑇 observations and 

𝑘 = 1, … , 𝐾 latent factors, takes the following general form 

𝑟𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖(R𝑡W) + 𝑢𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖F𝑡 + 𝑢𝑖,𝑡 , (1) 

where R𝑡 = (𝑟1,𝑡, … , 𝑟𝑝,𝑡) is the 𝑇 × 𝑁 matrix of asset returns and W = (𝑤1, … , 𝑤𝐾) is the 𝑁 × 𝐾 matrix 

of weights, with 𝐾 ≪ 𝑁, and 𝑢𝑖,𝑡 is the error term for asset 𝑖 at date 𝑡 and 𝐸(𝑢𝑖,𝑡|F𝑡) = 0. Each 𝑤𝑘 is 

the vector of weights used to construct the 𝑘th latent factor, 𝑓𝑘. The 𝑇 × 𝐾 matrix of latent factors is 

given by F𝑡 = R𝑡W, for factors F𝑡 = (𝑓𝑡,1, … , 𝑓𝑡,𝐾). The time-invariant factor loadings, 𝛽𝑖 =

(𝛽𝑖,1, … , 𝛽𝑖,𝐾), and the intercept, 𝑎𝑖, can be estimated by ordinary least squares (OLS) using the different 

factor representations. 

Two commonly used dimensionality reduction techniques are principal component analysis and 

partial least squares. They are both designed to uncover a lower dimensional linear combination of the 

original dataset; however, the methods differ in the way the latent factor matrix, F𝑡, is extracted. PCA 

derives the latent factors in an unsupervised way, by producing the weight matrix W to reflect only the 

covariance structure between asset returns. In contrast, PLS derives the factors in a supervised way by 

constructing 𝐾 linear combinations of R𝑡 that have maximum correlation with the target. 
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The latent factors generated from PCA and PLS are linear combinations of all the original 

variables, with the elements of the weight matrix W being non-zero, which does not automatically lead 

to the selection of the most important variables to construct the factors. To address this issue, we 

consider methods that produce modified latent factors with sparse weights, such that each latent factor 

is a linear combination of only a few of the original variables. Specifically, we use sparse principal 

component analysis (SPCA) and sparse partial least squares (SPLS). Both methods impose a penalty 

based on the combination of the 𝑙1 and 𝑙2 norms allowing for the construction of sparse latent factors. 

Finally, we construct latent factors using autoencoders which are a type of unsupervised neural 

network. Autoencoders are nonlinear generalizations of PCA. The goal of PCA and autoencoders is to 

learn a parsimonious representation of the original input data, R𝑡, through a bottleneck structure. The 

autoencoder behaves differently from PCA and SPCA, which reduce the dimensionality by mapping 

the original 𝑁 inputs into 𝐾 ≪ 𝑁 factors in a linear way, while the autoencoder uses non-linear 

activation functions to discover non-linear representations of the data. To reduce estimation error, we 

use two types of autoencoders; sparse autoencoders (AEN) that add a penalty to the loss function and 

denoising autoencoders (DAE) that attempt to reconstruct the original dataset after it has been corrupted 

by random noise. We consider a shallow network with a single hidden layer.4 Autoencoders have 

previously been used in a financial context by Huck (2019) as part of a prediction framework used to 

enhance the performance of statistical arbitrage strategies, while Gu, Kelly and Xiu (2021) propose a 

model for the cross-section of stock returns, where factors are latent, and the time-varying loadings 

depend on characteristics. Alternative network architectures that have been used in financial modeling 

and prediction include multilayer perceptrons (Gu, Kelly and Xiu, 2020) and recurrent neural networks 

(Fischer and Krauss, 2018). However, since our objective is to improve the estimates of the covariance 

matrix by reducing dimensionality through the creation of latent factors, it warrants the use of 

autoencoders as an appropriate solution for this task. 

Further details on the machine learning approaches and related literature are provided in the 

Online Appendix. 

2.2. Factor-based Covariance Matrices 

After the factor model is estimated from equation (1) or (2) the covariance matrix of returns, Σ𝑟, is 

obtained by its decomposition into two components: the first is based on the factor loadings and the 

factor covariance matrix, while the second is the covariance matrix of the errors. The time-invariant 

covariance matrix of the returns R = (𝑟1, … , 𝑟𝑁) is given by: 

 
4 In unreported results we also examine the performance of portfolios of factors based on neural networks with 

two to four hidden layers. Similar to recent studies (e.g., Gu, Kelly and Xiu, 2020), the results indicate that shallow 

learning outperforms deeper learning. This decline in portfolio performance is potentially associated with the high 

degree of turnover of strategies based on autoencoders with more hidden layers. The results are available from 

the authors upon request. 
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Σ𝑟 = Β′Σ𝑓Β + Σ𝑢, (2) 

where Β is a 𝐾 × 𝑁 matrix with the 𝑖th column containing the vector of time-invariant factor loadings 

𝛽𝑖 and Σ𝑓 and Σ𝑢 denote the time-invariant covariance matrices of the factors and the errors respectively. 

We focus on exact factor models (EFM) by Fan, Fan and Lv (2008), where the covariance matrix of the 

residuals 𝑢𝑡 is diagonal, Σ𝑢 ≡ diag(Σ𝑢). 

The models presented so far rely on a static factor covariance (SFC) specification. In this study 

we also consider dynamic factor models, which we define as a model that allows the factor loadings to 

be time varying (see e.g., Bali, Engle and Tang, 2017) or models in which either the factor or residual 

covariance matrix varies over time (Engle, Ng and Rothchild, 1990). A dynamic factor model is one in 

which at least one of the following three generalizations holds true: (i) the intercept and factor loadings 

are time-varying (dynamic beta covariance, DBC), (ii) the covariance matrix of the factors is time-

varying (dynamic factor covariance, DFC) or (iii) the covariance matrix of the errors is time-varying 

(dynamic error covariance, DEC).  

In the static case the betas of the assets remain constant over the estimation period. This 

assumption may not be plausible since betas typically vary over time. To this end we consider a time-

varying estimator of the factor loadings. When the intercepts 𝑎𝑖 and factor loadings 𝛽𝑖 are allowed to 

be time-varying the conditional dynamic factor model takes the following form 

𝑟𝑖,𝑡 = 𝑎𝑖,𝑡 + 𝛽𝑖,𝑡F𝑡 + 𝑢𝑖,𝑡. (3) 

The estimates of the time-varying regression coefficients are then obtained by �̂�𝑖,𝑡 = Σ𝑓,𝑡
−1𝜎𝑓𝑟𝑖,𝑡. The 

coefficients, �̂�𝑖,𝑡, of this expression are the dynamic conditional betas and are based on time-varying 

estimates of the factor covariance matrix Σ𝑓,𝑡 and the vector of covariances, 𝜎𝑓𝑟𝑖,𝑡 between the returns 

of asset 𝑖, 𝑟𝑖 and factor 𝑓𝑘, with 𝑘 = 1, … , 𝐾. The intercept can be obtained by �̂�𝑖,𝑡 = �̅�𝑖 − �̂�𝑖,𝑡F̅. The 

time-varying covariance matrix of R𝑡 is given by: 

Σ𝑟,𝑡 = B𝑡
′ Σ𝑓Β𝑡 + Σ𝑢, (4) 

where Β𝑡 is a 𝐾 × 𝑁 matrix with the 𝑖th column containing the vector of time-varying factor loadings 

𝛽𝑖,𝑡.  

The unconditional dynamic factor model under generalization (ii) and (iii) takes a form similar 

to equations (1) or (2), but with time-varying conditional covariance matrices for 𝑓𝑡 and 𝑢𝑡 respectively. 

If Σ𝑓 is time-varying, then the covariance matrix of R𝑡 is given by 

Σ𝑟,𝑡 = Β′Σ𝑓,𝑡Β + Σ𝑢. (5) 

Otherwise, if Σ𝑢 is assumed to be time-varying, then  

Σ𝑟,𝑡 = Β′Σ𝑓Β + Σ𝑢,𝑡 . (6) 

The factor covariance, Σ𝑓,𝑡 is estimated by the dynamic conditional correlation (DCC) model (Engle, 

2002) and the diagonal elements of Σ𝑢,𝑡 are estimated by univariate GARCH models.  
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2.3. Minimum-Variance Portfolios 

To investigate the economic value of the different estimates of the covariance matrix, Σ̂𝑟, from the factor 

models we focus on the minimum-variance framework, which has frequently been used in the portfolio 

optimization literature (see e.g., Maillet, Tokpavi and Vaucher, 2015; Carroll, Conlon, Cotter and 

Salvador, 2017). Assuming there are 𝑁 assets in the investment universe and 𝑟𝑡 = (𝑟1,𝑡, … , 𝑟𝑁,𝑡) is a 

vector of asset returns, the portfolio objective functions we consider are 

argmin
𝜔

𝜔′Σ̂𝑟𝜔,   s.t.   𝜔′i𝑁 = 1,   𝜔𝑖 ≥ 0,  (7) 

argmin
𝜔

𝜔′Σ̂𝑟𝜔,   s.t.   𝜔′i𝑁 = 1,  (8) 

argmin
𝜔

𝜔′Σ̂𝑟𝜔 + 𝜅‖𝜔 − 𝜔0‖1,   s.t.   𝜔′i𝑁 = 1, (9) 

for 𝑖 = 1, … , 𝑁, where 𝜔 = (𝜔1, … , 𝜔𝑁) is the portfolio weight vector and i𝑁 is a 𝑁 × 1 unit vector. 

The return of the portfolio can then be calculated as 𝑟𝑝,𝑡+1 = �̂�′𝑟𝑡+1. All portfolios include a leverage 

constraint, by imposing that the sum of the weights is equal to unity. In the baseline case we consider 

minimum-variance portfolios with short-selling constraints (Equation 7), by setting the lower bound of 

the portfolio weights to zero. The additional non-negativity constraint on minimum variance portfolios 

has been shown (Jagannathan and Ma, 2003) to be equivalent to shrinking the elements of the 

covariance matrix. We also consider global minimum-variance portfolios (Equation 8), where short-

selling is allowed. Finally, we consider minimum-variance portfolios (Equation 9), that explicitly take 

account of transaction costs during the portfolio formation process (Olivares-Nadal and DeMiguel, 

2018) by adding a penalization term based on the portfolio turnover to the portfolio’s objective function. 

Specifically, 𝜅 = 10 bps is the transaction cost parameter that controls for the degree to which portfolio 

turnover is penalized and 𝜔0 are the weights of the portfolio from the previous period before 

rebalancing.  

2.4. Benchmark Models 

We consider several alternative strategies, whose performance is compared to that of factor-based 

allocations. The equally weighted portfolio (EW), with weights 𝜔𝑖 = 1 𝑁⁄ , for 𝑖 = 1, … , 𝑁, while 

another scheme that requires no parameter estimation is the value-weighted (VW) portfolio, whose 

weights are based on the average market capitalization over the formation period.5 The remaining 

benchmarks are minimum-variance portfolios relying on four different estimators of the covariance 

matrix. We employ the sample covariance (Sample) estimator, the linear shrinkage (LINS) covariance 

 
5 DeMiguel, Garlappi and Uppal (2009) and Bianchi and Guidolin (2014) show the equally weighted portfolio to 

be a very stringent benchmark to outperform. In contrast, Platanakis, Sutcliffe and Ye (2021) show that while EW 

is preferable for stock selection, optimal portfolios can be beneficial for asset allocation, which takes place in 

smaller dimensions. 
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by Ledoit and Wolf (2002), the non-linear shrinkage (NLS) covariance by Ledoit and Wolf (2017) and 

the Wishart stochastic covariance (Wishart) by Moura, Santos and Ruiz (2020).  

3. Data and Sample Splitting  

The data set consists of monthly total individual stock returns from the Center for Research in Security 

Prices (CRSP) starting on January 1960 to December 2022 or 𝑇 = 756 monthly observations. Our 

approach regarding the backtest and the restrictions we impose on the data set is similar to that of Ledoit 

and Wolf (2017) and De Nard, Ledoit and Wolf (2019), but adapted to a monthly frequency. We restrict 

our data set to stocks listed on the NYSE, AMEX, and NASDAQ stock exchanges, to ordinary common 

shares whose price is greater than $1.  

We adopt a rolling window approach to examine the out-of-sample (OOS) economic 

performance of our models. The size of the rolling window is set to 𝑇0 = 240 monthly observations, 

with the initial window spanning the period from January 1960 to December 1979. The rolling window 

moves across the full sample by one monthly observation at a time, leading to an out-of-sample size of 

𝑇𝑂𝑂𝑆 = 𝑇 − 𝑇0 = 505 monthly observations, from January 1980 to January 2022. The portfolios are 

constructed in each iteration of the rolling window, based on stocks that have at least 97.5% history of 

returns available in the rolling window (missing values are replaced by the mean of the series) and are 

also not missing the return observation for the following month after the end of the rolling window. 

This forward-looking restriction is commonly applied to allow for the out-of-sample evaluation of 

portfolios, which are based on in-sample estimates of the covariance matrix.  

In the baseline case, the latent factors, covariance matrices and portfolio weights are estimated 

based on the 𝑁 = 100 stocks with the highest market capitalization within each iteration of the rolling 

window, before we expand the analysis to larger portfolios. In each iteration of the rolling window, we 

cross-sectionally transform the asset returns, R𝑡. Specifically, we calculate the rank of a stock based on 

the return and then divide the ranks by the number of observations and subtract 0.5 to map the features 

into the [−0.5,0.5] interval. This rank-transformation focuses on the ordering of the data and is 

insensitive to outliers and has been applied in several studies, for example, Gu, Kelly and Xiu (2020). 

The dimensionality reduction approaches used to derive the latent factors rely on hyperparameter 

tuning. The choice of hyperparameters controls the amount of model complexity and is critical for the 

performance of the model. We adopt the validation sample approach to select the optimal set of 

hyperparameters. Further details on the hyperparameter tuning can be found in Appendix 1.  

4. Empirical Results 

4.1. Forecast Evaluation 

The true covariance matrix S𝑡 is unobservable, and therefore the predictive accuracy of the models has 

to be measured with respect to some ex-post estimator, Ŝ𝑡. In each iteration, we approximate S𝑡 using 
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the sample covariance matrix based on daily returns from the following 12-month period, 𝑡 + 1, … , 𝑡 +

12. We use the estimated target covariance to compare the predictive performance of the alternative 

covariance matrices based on four loss functions previously employed by Laurent, Rombouts and 

Violante (2013) and Becker, Clements, Doolan and Hurn (2015). First, we consider two symmetric loss 

functions that do not penalize differently underpredictions and overpredictions. The mean squared error 

(MSE) is a symmetric loss that is derived as the mean squared distance between the covariance forecast, 

�̂�𝑡, and the target covariance proxy, �̂�𝑡: MSE = 1/𝑁2 vec(Σ̂𝑡 − Ŝ𝑡)
′

vec(Σ̂𝑡 − Ŝ𝑡), where vec(∙) 

represents the column stacking operator. As an alternative to squared errors, absolute errors can be 

measured using the mean absolute error (MAE) loss, computed as: MAE = 1/𝑁2i′ abs(Σ̂𝑡 − Ŝ𝑡) i, 

where abs(∙) is the absolute operator. The next two loss functions we consider are asymmetric with 

respect to under and over predictions. The quasi-likelihood function (QLK): QLK = log|Σ̂𝑡| +

i′(Σ̂𝑡 ⊙ Ŝ𝑡)i heavily penalizes under predictions, while a loss function that penalizes over predictions 

instead is: ASYM =  1/[𝑏(𝑏 − 1)]tr(Ŝ𝑡
𝑏 − Σ̂𝑡

𝑏) − 1/(𝑏 − 1)tr[Σ̂𝑡
𝑏−1(Σ̂𝑡 − Ŝ𝑡)], where tr(∙) is the trace 

operator and following Laurent, Rombouts and Violante (2013) we set 𝑏 = 3, indicating a mild degree 

of asymmetry. For all measures, a lower value is preferable. We also examine whether the alternative 

covariance matrix forecasts are statistically significantly different relative to the linear shrinkage 

covariance benchmark. The two-sided p-value is adjusted for autocorrelation up to 12-month lags. The 

results for the predictive accuracy of the covariance matrices are reported in Table 1.  

Focusing on the results for the MSE and MAE loss functions (Panel 1), we observe that the 

majority of the factor-based covariance matrices generate lower values for both measures compared to 

the remaining covariance matrices and yield results that are statistically significant at the 5% or 1% 

level relative to the LINS benchmark. Specifically, unsupervised learning methods (PCA, SPCA and 

autoencoders), are better at predicting the 12-month ahead covariance matrix than supervised methods 

(PLS and SPLS). The covariance matrices that generate the lowest MSE and MAE values are those 

based on the static factor covariance specification or those that allow the factor covariance or error 

covariance to vary over time, with the DEC based on AEN factors being the only case of a factor model 

yielding higher MSE than the covariance benchmarks.  

Turning to the predictive performance according to the QLK and ASYM loss functions (Panel 

B), the findings suggest that the predictive gains exhibited by the factor-based covariances in terms of 

MSE and MAE can be attributed to the lower degree of over predictions, evidenced by the lower ASYM 

values of the factor models compared to the covariance matrix benchmarks. The SFC and DFC 

specifications, in addition to a dynamic beta covariance based on PCA and dynamic error covariances 

based on linear dimensionality reduction approaches, yield results that are significantly different than 

those of the LINS in terms of the ASYM loss, while none of the remaining covariance benchmarks are 

significant. In contrast, the sample covariance, the shrinkage estimators and the Wishart stochastic 
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covariance yield lower QLK values than the majority of the factor-based covariances, however, the 

results for the Sample, NLS and Wishart covariances are not statistically significant. 

Table 1 Forecast evaluation of the covariance matrices of exact factor models 

This table reports the ability of the alternative covariance matrices to predict the out-of-sample realized 

covariance matrix based on four loss functions. Panel A reports the mean squared error (MSE) and mean 

absolute error (MAE), whereas the quasi-likelihood function (QLK) and asymmetric loss function (ASYM) 

can be found in Panel B. The average value of each measure over the out-of-sample period from January 

1980 to December 2022 is reported. The results are presented for the sample estimator (Sample), linear 

shrinkage (LINS) and non-linear shrinkage (NLS) estimators, Wishart stochastic covariance (Wishart) and 

for four exact factor covariance specifications: static factor covariance (SFC), dynamic factor covariance 

(DFC), dynamic beta covariance (DBC) and dynamic error covariance (DEC). The factor specifications are 

based on principal component analysis (PCA), partial least squares (PLS), sparse principal component 

analysis (SPCA), sparse partial least squares (SPLS), autoencoder (AEN) and denoising autoencoder (DAE). 

The statistical significance of the alternative covariance matrices compared to the LINS covariance 

benchmark is denoted by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

Panel A Mean squared error and mean absolute error 

 MSE MAE       

Sample 51.666 18.777       

LINS 51.972 19.139       

NLS 48.217 18.306       

Wishart 54.911 19.143             

 SFC DFC DBC DEC 

 MSE MAE MSE MAE MSE MAE MSE MAE 

PCA 14.900** 6.540*** 16.752*** 6.989*** 19.561*** 6.397*** 17.381*** 6.384*** 

PLS 18.471** 8.071** 20.665*** 8.353*** 26.225** 7.941*** 20.301*** 7.926** 

SPCA 14.639** 6.463** 15.977*** 6.806*** 23.382*** 6.309*** 16.802*** 6.308** 

SPLS 18.394** 8.022** 20.645*** 8.317*** 26.060** 7.883*** 21.000*** 7.878** 

AEN 14.729** 6.467** 17.828*** 7.201** 19.708*** 6.184** 71.469 6.316** 

DAE 14.730** 6.492* 17.550*** 7.181** 19.337*** 6.240** 24.374*** 6.336** 

Panel B Quasi-likelihood function and asymmetric loss function 

 QLK ASYM       

Sample 21.810 3.488       

LINS 23.599 3.558       

NLS 24.965 3.247       

Wishart 23.328 3.818             

 SFC DFC DBC DEC 

 QLK ASYM QLK ASYM QLK ASYM QLK ASYM 

PCA 29.000 0.444** 29.004 0.628*** 29.178** 1.433** 24.086 0.907*** 

PLS 28.677* 0.663** 28.675* 0.984*** 28.862*** 2.685 23.868 0.942*** 

SPCA 29.022 0.422** 29.023 0.556*** 29.187* 4.406 24.136 0.850*** 

SPLS 28.697* 0.660** 28.696* 0.977*** 28.879*** 2.698 23.887 1.140*** 

AEN 29.004 0.434** 29.013 0.715** 29.190 1.667 24.053 98.997 

DAE 28.984* 0.430** 28.992* 0.687*** 29.174** 1.512* 24.046 6.638 

 

4.2. Portfolio Performance 

To examine the economic value of factor-based covariance matrices we rely on portfolio objective 

functions that are designed to minimize variance rather than maximize the expected return. Therefore, 

similar to Ledoit and Wolf (2017) and De Nard, Ledoit and Wolf (2019), we primarily compare the 

economic value of the alternative covariance matrices using the standard deviation, followed by the 
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Sharpe ratio.6 In Table 2 we report the monthly performance of the portfolios over the out-of-sample 

period, 𝑇𝑂𝑂𝑆, based on the standard deviation (SD) of the 505 out-of-sample portfolio returns in excess 

of the risk-free rate and the Sharpe ratio (SR) of the portfolio calculated as (�̅�𝑝 − �̅�𝑓) SD⁄ , where �̅�𝑝 is 

the average value of the portfolio returns and �̅�𝑓 is the average value of the risk-free rate.7 

Table 2 Portfolio performance of exact factor models based on standard deviation and Sharpe ratio 

This table documents monthly portfolio performance measured using the standard deviation (SD) and 

Sharpe ratio (SR), over the out-of-sample period from January 1980 to December 2022. The results are 

presented for the equally weighted portfolio (EW), value-weighted portfolio (VW) and minimum-variance 

portfolios with short-selling constraints based on the sample estimator (Sample), linear shrinkage (LINS) 

and non-linear shrinkage (NLS) estimators, Wishart stochastic covariance (Wishart) and for four exact 

factor model (EFM) covariance specifications: static factor covariance (SFC), dynamic factor covariance 

(DFC), dynamic beta covariance (DBC) and dynamic error covariance (DEC). The factor specifications 

are based on principal component analysis (PCA), partial least squares (PLS), sparse principal component 

analysis (SPCA), sparse partial least squares (SPLS), autoencoder (AEN) and denoising autoencoder 

(DAE). 

 SD SR       
EW 4.275 0.196       
VW 4.137 0.188       
Sample 3.501 0.212       
LINS 3.510 0.218       
NLS 3.450 0.219       
Wishart 3.736 0.210             

 SFC DFC DBC DEC 

 SD SR SD SR SD SR SD SR 

PCA 3.413 0.241 3.412 0.241 3.347 0.245 3.323 0.243 

PLS 3.422 0.229 3.429 0.228 3.348 0.233 3.320 0.241 

SPCA 3.424 0.241 3.427 0.240 3.346 0.246 3.340 0.243 

SPLS 3.425 0.230 3.431 0.228 3.352 0.233 3.306 0.241 

AEN 3.404 0.243 3.401 0.243 3.343 0.249 3.329 0.244 

DAE 3.408 0.241 3.405 0.241 3.362 0.245 3.317 0.244 

 

The results indicate that optimal portfolios consistently outperform the EW and VW portfolios 

in terms of standard deviation and Sharpe ratio by a wide margin. The VW portfolio outperforms the 

EW portfolio in terms of risk but not Sharpe ratio. From the benchmark covariance matrices, NLS has 

the lowest SD and highest Sharpe ratio, of 3.45% and 0.219 respectively, indicating it is the hardest 

benchmark to outperform. Using a factor-based covariance matrix, can lead to a decrease in out-of-

sample standard deviation of up to 22% and an increase in Sharpe ratio of over 25% relative to the EW 

portfolio. Compared to the NLS estimator, using a factor model can lead to a decrease in portfolio risk 

of up to 4% and an increase in Sharpe ratio of over 10%. Factors based on unsupervised methods (PCA, 

SPCA, AEN and DAE) are found to yield the best performance. For the SFC, DFC and DBC the 

autoencoder yields the lowest standard deviation, 3.343% to 3.404% depending on the specification, 

 
6 The standard deviation and Sharpe ratio for the global minimum-variance portfolio and turnover-constrained 

minimum-variance portfolio are reported in Tables A1 and A2 in the Online Appendix. 
7 Hwang, Xu, and In (2018) emphasize the importance of tail risk when comparing the performance of optimal 

strategies with that of the 1/𝑁 rule. Therefore, we examine the portfolio performance using several alternative 

risk measures, including the value-at-risk (VaR) and conditional value-at-risk (CVaR) and the ratios of portfolio 

excess returns with VaR or CVaR. The results are reported in Table A3 in the Appendix.  
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except for DEC where SPLS yields the lowest standard deviation with a value of 3.306%. The two 

autoencoders have the highest Sharpe ratio, with values between 0.243 and 0.249. AEN has the highest 

Sharpe ratio in the dynamic beta covariance specification, while SPCA is the best performing model 

for the remaining specifications. Overall, the best performing portfolios are based on the dynamic error 

or dynamic beta covariance specifications, while portfolios based on static or dynamic factor covariance 

generate comparable performance. 

4.3. Properties of Portfolio Weights 

In this Section we explore how the weighing structure of the portfolios differs across different estimates 

of the covariance matrix. We start by analyzing the properties of the portfolio weights, �̂�, using the 

minimum non-zero weight (MIN), maximum weight (MAX), the standard deviation of the portfolio 

weights (SD) and in line with DeMiguel, Garlappi and Uppal (2009), we report the average monthly 

portfolio turnover (TO) computed as the average absolute change of the portfolio weights over the 𝑇𝑂𝑂𝑆 

rebalancing periods across the 𝑁 assets. The turnover at time 𝑡 + 1 is given by ‖𝜔𝑡+1 − 𝜔𝑡‖1, where 

𝜔𝑡+1 is the vector of portfolio weights at time 𝑡 + 1 and 𝜔𝑡 are the portfolio weights at the time before 

rebalancing. Furthermore, we examine the concentration of the portfolio using the Herfindahl-

Hirschman index (HHI) computed as ∑ �̂�𝑖
2𝑁

𝑖=1 , with a lower HHI implying a more diversified portfolio. 

Finally, we report the percentage of non-zero weights (NZ). Table 3 reports the average value of each 

weight characteristic over the out-of-sample period.8  

Overall, portfolios based on latent factors are more diversified and tend to produce weights which 

are smaller and less volatile than portfolios based on the covariance benchmarks. Specifically, the value 

of maximum weight varies between 14.1% and 21.4% for the sample, shrinkage and Wishart covariance 

matrices, while for the latent factor models the value of the maximum weight is from 4.8% to 8.6%, 

with portfolios based on the dynamic error covariance specification generating higher weights. 

Furthermore, portfolios based on the static factor covariance or the dynamic factor covariance 

specifications have the lowest weight standard deviation. Turnover varies depending on the type of 

covariance specification and factor considered. The lowest turnover is produced by portfolios based on 

PLS and SPLS factors for a static factor covariance specification (approximately 4%). Comparing 

across different covariance specifications, portfolios based on the DBC, DEC and autoencoders exhibit 

higher turnover than the remaining factor specifications. Finally, the Herfindahl-Hirschman index and 

percentage of non-zero weights measures indicate that strategies based on latent factors generated from 

unsupervised learning methods are less concentrated on a small number of stocks than other minimum-

variance portfolios. 

 

 
8 The properties of the portfolio weight vectors for minimum-variance portfolios that allow short-selling and 

portfolios with a turnover penalty are reported in Tables A4 and A5 respectively, found in the Online Appendix. 
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Table 3 Characteristics of the portfolio weight vectors of exact factor models 

This table presents the monthly characteristics of the portfolio weight vectors. Panel A reports the minimum non-zero weight (MIN), maximum 

weight (MAX) and standard deviation of the weights (SD), whereas the portfolios turnover (TO), Herfindahl-Hirschman index (HHI) and 

percentage of non-zero weights (NZ) can be found in Panel B. The average value of each weight characteristic over the out-of-sample period 

from January 1980 to December 2022 is reported. MIN, MAX, TO and NZ are reported as a percentage. The results are presented for the 

equally weighted portfolio (EW), value-weighted portfolio (VW) and minimum-variance portfolios with short-selling constraints based on the 

sample estimator (Sample), linear shrinkage (LINS) and non-linear shrinkage (NLS) estimators, Wishart stochastic covariance (Wishart) and 

for four exact factor model (EFM) covariance specifications: static factor covariance (SFC), dynamic factor covariance (DFC), dynamic beta 

covariance (DBC) and dynamic error covariance (DEC). The factor specifications are based on principal component analysis (PCA), partial 

least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS), autoencoder (AEN) and denoising 

autoencoder (DAE). 

Panel A Minimum non-zero weight, maximum weight and standard deviation of the weights 

 MIN MAX SD          
EW 1.000 1.000 0.346          
VW 0.310 6.710 0.307          
Sample 0.186 21.414 0.595          
LINS 0.173 16.893 0.559          
NLS 0.165 14.160 0.525          
Wishart 0.205 19.486 0.641                   

  SFC DFC DBC DEC 

 MIN MAX SD MIN MAX SD MIN MAX SD MIN MAX SD 

PCA 0.028 5.022 0.389 0.028 5.048 0.390 0.032 4.914 0.404 0.020 6.766 0.457 

PLS 0.029 6.411 0.391 0.027 6.430 0.392 0.033 6.034 0.420 0.024 8.603 0.452 

SPCA 0.036 5.169 0.387 0.038 5.193 0.389 0.034 5.041 0.399 0.026 6.974 0.455 

SPLS 0.031 6.416 0.388 0.029 6.435 0.390 0.033 6.019 0.418 0.026 8.560 0.449 

AEN 0.034 5.023 0.392 0.037 5.091 0.396 0.040 4.814 0.406 0.027 6.865 0.463 

DAE 0.031 4.977 0.390 0.032 5.034 0.393 0.039 4.806 0.407 0.027 6.863 0.460 

Panel B Portfolio turnover, Herfindahl-Hirschman index and percentage of non-zero weights 

 TO HHI NZ          
EW 1.030 0.01 100          
VW 0.880 4.288 100          
Sample 8.247 21.127 8.109          
LINS 8.004 16.515 9.307          
NLS 7.957 13.366 10.233          
Wishart 10.575 19.358 8.342                   

  SFC DFC DBC DEC 

 TO HHI NZ TO HHI NZ TO HHI NZ TO HHI NZ 

PCA 5.929 4.358 30.012 6.178 4.394 29.802 13.125 4.275 30.448 21.800 5.405 29.002 

PLS 3.933 5.768 23.582 4.090 5.793 23.579 12.263 5.470 24.993 20.156 7.392 22.272 

SPCA 9.260 4.426 29.966 9.439 4.456 29.903 15.551 4.350 30.326 24.424 5.489 29.119 

SPLS 4.037 5.754 23.715 4.198 5.781 23.679 12.515 5.455 24.997 20.142 7.364 22.300 

AEN 12.674 4.353 29.935 13.253 4.430 29.634 17.708 4.192 30.667 26.823 5.431 28.906 

DAE 10.795 4.342 29.903 11.168 4.408 29.643 16.787 4.209 30.569 25.247 5.420 28.900 

 

4.4. Portfolio Performance After Transaction Costs 

The portfolio’s return is modified to account for transaction costs based on portfolio turnover. Given a 

transaction cost level of 𝑐, the trading cost of the entire portfolio is 𝑐‖𝜔𝑡+1 − 𝜔𝑡‖1. The return of the 

portfolio after transaction costs becomes 𝑟𝑝,𝑡+1
𝑇𝐶 = (1 + 𝑟𝑝,𝑡+1)(1 − 𝑐‖𝜔𝑡+1 − 𝜔𝑡‖1) − 1. Portfolio 

performance after transaction costs is reported in Table 4 for transaction costs of 𝑐 = 5 bps and 20 bps.9 

 

 
9 The performance after transaction costs for minimum-variance portfolios that allow short-selling and portfolios 

with a turnover penalty are reported in Tables A6 and A7 respectively in the Online Appendix. 
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Table 4 Portfolio performance of exact factor models after transaction costs  

This table presents monthly portfolio performance measured using the standard deviation (SD) and Sharpe 

ratio (SR), after transaction costs are taken into account. In this setting transaction costs would arise from 

changes to the stock universe from one month to the next and from the change in weights of stocks that 

remain in the stock universe for multiple iterations. The portfolio’s return is modified to account for 

transaction costs based on portfolio turnover. Panel A reports the results for transaction costs of c=5 bps, 

while Panel B presents the results for transaction costs of c=20 bps. The out-of-sample period is from 

January 1980 to December 2022. The results are presented for the equally weighted portfolio (EW), value-

weighted portfolio (VW) and minimum-variance portfolios with short-selling constraints based on the 

sample estimator (Sample), linear shrinkage (LINS) and non-linear shrinkage (NLS) estimators, Wishart 

stochastic covariance (Wishart) and for four exact factor model (EFM) covariance specifications: static 

factor covariance (SFC), dynamic factor covariance (DFC), dynamic beta covariance (DBC) and dynamic 

error covariance (DEC). The factor specifications are based on principal component analysis (PCA), 

partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares 

(SPLS), autoencoder (AEN) and denoising autoencoder (DAE). 

Panel A Transaction costs of c = 5 bps 

 SD SR       

EW 4.275 0.196       

VW 4.137 0.188       

Sample 3.502 0.211       

LINS 3.510 0.217       

NLS 3.450 0.218       

Wishart 3.736 0.209             

 SFC DFC DBC DEC 

 SD SR SD SR SD SR SD SR 

PCA 3.413 0.240 3.412 0.240 3.347 0.243 3.322 0.239 

PLS 3.422 0.229 3.429 0.227 3.348 0.231 3.320 0.238 

SPCA 3.424 0.240 3.427 0.239 3.346 0.244 3.340 0.240 

SPLS 3.425 0.229 3.431 0.227 3.352 0.231 3.306 0.237 

AEN 3.404 0.242 3.400 0.241 3.343 0.246 3.329 0.240 

DAE 3.407 0.239 3.405 0.239 3.362 0.243 3.317 0.240 

Panel B Transaction costs of c = 20 bps 

 SD SR       

EW 4.275 0.196       

VW 4.137 0.188       

Sample 3.502 0.208       

LINS 3.511 0.213       

NLS 3.451 0.215       

Wishart 3.738 0.204             

 SFC DFC DBC DEC 

 SD SR SD SR SD SR SD SR 

PCA 3.413 0.237 3.412 0.237 3.346 0.237 3.322 0.229 

PLS 3.423 0.227 3.429 0.225 3.347 0.226 3.319 0.229 

SPCA 3.425 0.236 3.428 0.235 3.346 0.237 3.341 0.229 

SPLS 3.425 0.227 3.431 0.225 3.352 0.225 3.305 0.228 

AEN 3.403 0.236 3.400 0.235 3.342 0.238 3.328 0.228 

DAE 3.407 0.234 3.405 0.234 3.361 0.235 3.316 0.229 

 

The performance in terms of out-of-sample standard deviation after transaction costs of 5 or 20 

bps remains qualitatively unchanged from the no-transaction cost case. Optimal strategies consistently 

outperform the EW and VW allocation approaches and factor-based portfolios exhibit similar or lower 

risk than the portfolio based on the NLS estimator. In terms of Sharpe ratio, outperformance of the 

optimal strategies relative to the EW and VW, while still relevant, is diminished when transaction costs 

are introduced. The strategies that are most affected are those that exhibit the highest turnover, which 

include portfolios based on the Wishart covariance, non-linear factors or those that allow the betas or 
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error covariance to be time-varying. Overall, while dynamic strategies result in lower portfolio risk, 

their performance in terms of Sharpe ratio after transaction costs are taken into account is worse than 

that based on static specifications.  

4.5. Statistical Significance of Portfolio Performance 

We also consider the question whether one portfolio delivers improved out-of-sample performance 

relative to another portfolio at a level that is statistically significant. DeMiguel, Garlappi, and Uppal 

(2009) provide persuasive evidence that the simple equally weighted portfolio should serve as a natural 

benchmark to assess the performance of more sophisticated strategies. We also consider seven 

alternative benchmarks, namely the VW portfolio, and optimal allocations based on the Sample, LINS, 

NLS, Wishart covariance matrices, as well as minimum-variance portfolios based on the static factor 

covariance specification using PCA and PLS latent factors (PCA-SFC and PLS-SFC). For each case, 

the test-statistics and two-sided 𝑝-values are obtained by the Ledoit and Wolf (2011) test for the null 

hypothesis of equal standard deviations and by the Opdyke (2007) test for the null hypothesis of equal 

Sharpe ratios. The test statistics based on portfolio returns after transaction costs of 20 bps are reported 

in Table 5, with a positive value indicating economic outperformance for the respective measure. 10 

Overall, factor-based portfolios provide statistical outperformance relative to the series of 

benchmarks proposed after transaction costs. When the EW is the benchmark the results for the standard 

deviation indicate a significance at the 1% level for all strategies, however, significant outperformance 

for the Sharpe ratios is observed only for factor-based allocations. Turning to the results for when the 

VW portfolio is the benchmark, we observe that the optimal strategies outperform the value-weighted 

portfolio in terms of risk at the 1% significance level, while in terms of Sharpe ratio the two shrinkage 

estimators exhibit significant outperformance at the 5% level and the majority of the factor-based 

allocations significantly outperform the VW benchmark at the 1% level. For the sample estimator 

benchmark, portfolios based on the NLS estimator and the DBC and DEC factor specifications lead to 

significant outperformance at the 5% or 10% level for standard deviation, while in terms of Sharpe ratio 

all factor-based portfolios are significant at the 1% level. The results for the LINS estimator are similar  

to those of Sample, with portfolios based on the NLS covariance matrix outperforming at the 1% level 

and those based on specifications that allow the factor loadings or error covariance to vary over time 

showing outperformance at the 5% level. In contrast, the NLS estimator is a more difficult benchmark 

to significantly outperform in terms of risk, with seven portfolios based on either DBC or DEC 

specifications showing significant results at the 10% level. Comparatively, when the Wishart covariance 

is the benchmark, all optimal strategies have statistically significant results for standard deviation at the 

1% level, with latent factor models generating significant Sharpe ratio against the benchmark at the 1% 

 
10 The statistical significance of the performance for minimum-variance portfolios that allow short-selling and 

portfolios with a turnover penalty are reported in Tables A8 and A9 respectively in the Online Appendix. 
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level. Finally, setting the benchmark to be a static factor model based on PCA or PLS latent factors, the 

strategies that yield significant standard deviation are those based on DBC and DEC specifications, 

while only a few strategies based on unsupervised dimensionality reduction methods and the DBC 

specification lead to significant Sharpe ratios at the 1% level.  

Table 5 Statistical evaluation of the portfolio standard deviation and Sharpe ratio after transaction costs of 20 bps of 

exact factor models 

This table reports the test statistics for the standard deviation and Sharpe ratio of the alternative strategies against several 

benchmarks. The out-of-sample period is from January 1980 to December 2022. The out-of-sample period is from 

January 1980 to December 2022. A positive test statistic indicates economic outperformance of the alternative portfolio 

(rows) against the benchmark (columns) for the respective performance measure. The results are presented for the 

equally weighted portfolio (EW), value-weighted portfolio (VW) and minimum-variance portfolios with short-selling 

constraints based on the sample estimator (Sample), linear shrinkage (LINS) and non-linear shrinkage (NLS) estimators, 

Wishart stochastic covariance (Wishart) and for four exact factor model (EFM) covariance specifications: static factor 

covariance (SFC), dynamic factor covariance (DFC), dynamic beta covariance (DBC) and dynamic error covariance 

(DEC). The factor specifications are based on principal component analysis (PCA), partial least squares (PLS), sparse 

principal component analysis (SPCA), sparse partial least squares (SPLS), autoencoder (AEN) and denoising 

autoencoder (DAE). The statistical significance of the alternative strategies compared to the benchmark strategy is 

denoted by: *, **, and *** for significance at the 10%, 5%, and 1% level, respectively. 

  EW VW Sample LINS 

 SD SR SD SR SD SR SD SR 

EW - - -3.580*** 0.183 -5.758*** -0.264 -6.098*** -0.395 

VW 3.580*** -0.183 - - -4.712*** -0.447 -4.998*** -0.578 

Sample 5.758*** 0.264 4.712*** 0.447 - - 0.373 -0.131 

LINS 6.098*** 0.395 4.998*** 0.578** -0.373 0.131 - - 

NLS 6.603*** 0.419 5.463*** 0.602** 2.182** 0.155 3.201*** 0.024 

Wishart 4.163*** 0.188 3.098*** 0.371 -4.711*** -0.077 -5.077*** -0.207 

Static Factor Covariance 

PCA 9.025*** 0.930*** 7.577*** 1.113*** 1.103 0.666*** 1.290 0.535*** 

PLS 7.220*** 0.702** 5.934*** 0.885*** 1.053 0.438*** 1.214 0.307*** 

SPCA 8.797*** 0.895*** 7.329*** 1.078*** 0.933 0.631*** 1.110 0.500*** 

SPLS 7.127*** 0.706** 5.845*** 0.889*** 1.002 0.442*** 1.152 0.311*** 

AEN 8.829*** 0.902*** 7.459*** 1.085*** 1.241 0.638*** 1.427 0.507*** 

DAE 9.250*** 0.867*** 7.754*** 1.050*** 1.197 0.603*** 1.391 0.472*** 

Dynamic Factor Covariance 

PCA 9.032*** 0.932*** 7.603*** 1.115*** 1.104 0.668*** 1.295 0.537*** 

PLS 7.213*** 0.661** 5.936*** 0.844*** 0.962 0.397*** 1.125 0.266** 

SPCA 8.792*** 0.872*** 7.329*** 1.055*** 0.889 0.608*** 1.064 0.477*** 

SPLS 7.103*** 0.656** 5.835*** 0.839*** 0.914 0.392*** 1.067 0.261** 

AEN 8.820*** 0.879*** 7.466*** 1.062*** 1.268 0.614*** 1.458 0.484*** 

DAE 9.184*** 0.863*** 7.705*** 1.046*** 1.212 0.598*** 1.410 0.467*** 

Dynamic Beta Covariance 

PCA 8.806*** 0.917*** 7.072*** 1.100*** 2.143** 0.652*** 2.296** 0.521*** 

PLS 7.442*** 0.671** 6.023*** 0.854*** 2.196** 0.407*** 2.295** 0.276*** 

SPCA 8.876*** 0.92*** 7.147*** 1.103*** 2.165** 0.656*** 2.330** 0.525*** 

SPLS 7.268*** 0.656** 5.882*** 0.839** 2.072** 0.392*** 2.161** 0.261** 

AEN 8.693*** 0.955*** 6.972*** 1.138*** 2.204** 0.691*** 2.332** 0.560*** 

DAE 8.789*** 0.885*** 6.979*** 1.068*** 1.915* 0.621*** 2.060** 0.490*** 

Dynamic Error Covariance 

PCA 8.613*** 0.752*** 7.071*** 0.935*** 2.252** 0.488*** 2.417** 0.357*** 

PLS 7.205*** 0.749** 5.944*** 0.932** 2.216** 0.485*** 2.352** 0.354** 

SPCA 8.463*** 0.733*** 6.975*** 0.916*** 2.052** 0.469*** 2.18** 0.338*** 

SPLS 7.191*** 0.729** 5.953*** 0.912** 2.367** 0.465*** 2.48** 0.334** 

AEN 8.442*** 0.712*** 6.951*** 0.895*** 2.170** 0.448*** 2.328** 0.317** 

DAE 8.724*** 0.743*** 7.208*** 0.926*** 2.333** 0.479*** 2.504** 0.348*** 
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Table 5 (Continued) 

  NLS Wishart PCA-SFC PLS-SFC 

 SD SR SD SR SD SR SD SR 

EW -6.603*** -0.419 -4.163*** -0.188 -9.025*** -0.930 -7.220*** -0.702 

VW -5.463*** -0.602 -3.098*** -0.371 -7.577*** -1.113 -5.934*** -0.885 

Sample -2.182** -0.155 4.711*** 0.077 -1.103 -0.666 -1.053 -0.438 

LINS -3.201*** -0.024 5.077*** 0.207 -1.290 -0.535 -1.214 -0.307 

NLS - - 6.343*** 0.232 -0.535 -0.511 -0.427 -0.283 

Wishart -6.343*** -0.232 - - -4.095*** -0.742 -3.923*** -0.515 

Static Factor Covariance 

PCA 0.535 0.511*** 4.095*** 0.742*** - - 0.206 0.228 

PLS 0.427 0.283*** 3.923*** 0.515*** -0.206 -0.228 - - 

SPCA 0.355 0.475*** 3.916*** 0.707*** -0.706 -0.035 -0.060 0.192 

SPLS 0.382 0.287*** 3.848*** 0.519*** -0.253 -0.224 -0.606 0.004 

AEN 0.682 0.483*** 4.223*** 0.715*** 0.799 -0.028 0.457 0.200 

DAE 0.634 0.448*** 4.182*** 0.680*** 0.316 -0.063 0.330 0.165 

Dynamic Factor Covariance 

PCA 0.546 0.513*** 4.083*** 0.744*** 0.459 0.002 0.228 0.230 

PLS 0.334 0.242*** 3.828*** 0.473*** -0.342 -0.269 -1.898* -0.041 

SPCA 0.312 0.453*** 3.866*** 0.685*** -0.862 -0.058 -0.123 0.170 

SPLS 0.290 0.237*** 3.757*** 0.469*** -0.389 -0.274 -1.713* -0.046 

AEN 0.721 0.459*** 4.243*** 0.691*** 1.023 -0.051 0.523 0.176 

DAE 0.659 0.443*** 4.182*** 0.675*** 0.406 -0.067 0.370 0.160 

Dynamic Beta Covariance 

PCA 1.620 0.497*** 5.145*** 0.729*** 2.009** -0.013 1.496 0.214*** 

PLS 1.631 0.252*** 5.048*** 0.483*** 1.260 -0.259 2.529** -0.031 

SPCA 1.643 0.501*** 5.140*** 0.733*** 1.988** -0.010 1.632 0.218 

SPLS 1.505 0.237*** 4.878*** 0.469*** 1.136 -0.274 2.389** -0.046 

AEN 1.668* 0.536*** 5.048*** 0.767*** 2.273** 0.025 1.653* 0.253*** 

DAE 1.365 0.466*** 4.875*** 0.698*** 1.284 -0.045 1.146 0.183*** 

Dynamic Error Covariance 

PCA 1.785* 0.333*** 4.826*** 0.565*** 2.797*** -0.178 2.319** 0.050 

PLS 1.741* 0.330*** 4.256*** 0.561*** 1.612 -0.181 2.907*** 0.047 

SPCA 1.534 0.314*** 4.661*** 0.546*** 2.151** -0.197 1.959* 0.031 

SPLS 1.890* 0.310*** 4.373*** 0.542*** 1.786* -0.201 3.276*** 0.027 

AEN 1.692* 0.292*** 4.699*** 0.524*** 2.625*** -0.218 2.354** 0.009 

DAE 1.881* 0.324*** 4.886*** 0.555*** 3.054*** -0.187 2.349** 0.041 

 

4.6. Subperiod Analysis 

In this section we examine portfolio performance during different subperiods as defined by market 

volatility.11 The impact of different market regimes on asset allocation has been well documented in the 

literature (see Buckley, Saunders and Seco, 2008; Guidolin and Timmermann, 2008; Guidolin and 

Hyde, 2012; Bae, Kim, and Mulvey, 2014). During high volatility periods (Table 6, Panel A) all optimal 

portfolios outperform the EW and VW schemes in terms of both standard deviation and Sharpe ratio. 

Strategies based on the DBC and DEC specifications exhibit lower risk and higher Sharpe ratio than 

 
11 The regimes are determined based on the filtered probabilities of the following two-state Markov Switching 

model: 𝑟𝑚,𝑡 = 𝜇𝑠 + 𝑒𝑡,𝑠, with 𝑒𝑡,𝑠~𝑁(0, 𝜎𝑡,𝑠
2 ), where 𝑟𝑚 is the market factor return, 𝑠 represents the latent state and 

𝜇𝑠 and 𝜎𝑠
2 denote the state dependent mean and variance. When the filtered probability of the low volatility state 

is lower than 0.5 the market is in a high-volatility period, while observations where the filtered probability of the 

low volatility state is higher than 0.5 are low-volatility periods. The market factor was obtained from Kenneth 

French’s Data Library.  
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the remaining covariance estimators. Specifically, the best performing strategies are those based on PLS 

and SPLS for the DEC specification with monthly Sharpe ratio of 0.173 and 0.172 respectively. For 

low volatility periods (Panel B) portfolios based on latent factors generate risk and Sharpe ratio that are 

similar to the EW portfolio, with factor-based allocations outperforming the remaining benchmarks.12 

 

Table 6 Portfolio performance of exact factor models during different volatility regimes  

In this table, we document the monthly portfolio performance measured using the standard deviation (SD) 

and Sharpe ratio (SR), during high (Panel A) and low (Panel B) volatility periods based on the filtered 

probabilities of a Markov-switching model estimated using the market factor. Observations where the 

filtered probability of the low volatility regime is above 0.5 are considered low-volatility periods, and 

observations where the filtered probability of the low volatility regime is below 0.5 are considered high-

volatility periods. The results are presented for the equally weighted portfolio (EW), value-weighted 

portfolio (VW) and minimum-variance portfolios with short-selling constraints based on the sample 

estimator (Sample), linear shrinkage (LINS) and non-linear shrinkage (NLS) estimators, Wishart 

stochastic covariance (Wishart) and for four exact factor model (EFM) covariance specifications: static 

factor covariance (SFC), dynamic factor covariance (DFC), dynamic beta covariance (DBC) and dynamic 

error covariance (DEC). The factor specifications are based on principal component analysis (PCA), 

partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares 

(SPLS), autoencoder (AEN) and denoising autoencoder (DAE). 

Panel A High volatility regime 

 SD SR       

EW 5.291 0.123       

VW 5.080 0.120       

Sample 4.045 0.158       

LINS 4.082 0.158       

NLS 4.019 0.147       

Wishart 4.375 0.151       

 SFC DFC DBC DEC 

 SD SR SD SR SD SR SD SR 

PCA 4.080 0.159 4.078 0.159 3.982 0.158 3.945 0.160 

PLS 4.060 0.154 4.068 0.152 3.955 0.152 3.893 0.173 

SPCA 4.096 0.160 4.100 0.159 3.979 0.161 3.965 0.160 

SPLS 4.064 0.154 4.072 0.151 3.962 0.151 3.878 0.172 

AEN 4.058 0.161 4.053 0.160 3.970 0.163 3.938 0.162 

DAE 4.062 0.161 4.057 0.160 3.999 0.163 3.923 0.162 

Panel B Low volatility regime 

 SD SR       

EW 2.375 0.457       

VW 2.415 0.412       

Sample 2.638 0.334       

LINS 2.589 0.356       

NLS 2.524 0.384       

Wishart 2.692 0.352             

 SFC DFC DBC DEC 

 SD SR SD SR SD SR SD SR 

PCA 2.265 0.463 2.266 0.462 2.260 0.471 2.265 0.457 

PLS 2.347 0.423 2.348 0.422 2.327 0.435 2.382 0.405 

SPCA 2.267 0.461 2.268 0.461 2.266 0.469 2.280 0.457 

SPLS 2.346 0.425 2.347 0.424 2.327 0.437 2.367 0.407 

AEN 2.285 0.461 2.284 0.461 2.277 0.471 2.304 0.450 

DAE 2.288 0.454 2.293 0.454 2.278 0.460 2.297 0.450 

 

 
12 The performance during different volatility regimes for minimum-variance portfolios that allow short-selling 

and portfolios with a turnover penalty are reported in Tables A10 and A11 respectively in the Appendix. 
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4.7. Varying Number of Assets 

Here we examine how performance is affected according to the number of assets in the portfolio. Along 

with the baseline case for 𝑁 = 100, the results for portfolios for 𝑁 = {30, 50, 200, 300, 400, 500} 

largest stocks by market capitalization13 are presented in Figure 1 for the case of the static factor 

covariance specification.14  

Figure 1 Portfolio performance for a different number of stocks: Static Factor Covariance 

This figure shows the monthly portfolio performance for a varying number of assets. Performance is based 

on the standard deviation, Sharpe ratio and average turnover. The out-of-sample period is from January 

1980 to December 2022. The results are presented for the equally weighted portfolio (EW), for the linear 

shrinkage (LINS) and non-linear shrinkage (NLS) estimators and for the static factor covariance (SFC) 

based on an exact factor model (EFM). The factor specifications are based on principal component analysis 

(PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse partial least squares 

(SPLS), autoencoder (AEN) and denoising autoencoder (DAE). The standard deviation and average 

turnover are reported as a percentage.  

 

 
13 The maximum fixed number of assets available throughout the out-of-sample period is 500. 
14 The results for the remaining covariance specifications exhibit a similar pattern to that of the static case and are 

presented in Figures A1, A2 and A3 in the Appendix, for the cases when 𝐵, Σ𝑓 and Σ𝑢 are dynamic, respectively.  
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When the number of assets changes, the 1/𝑁 portfolio is still consistently outperformed by the 

alternative strategies, with standard deviation increasing with the size of the portfolio, and Sharpe ratio 

remaining relatively flat. Decreasing the number of assets to 𝑁 = {30, 50}, strategies based on 

shrinkage estimators tend to outperform those using latent factors in terms of risk and Sharpe ratio. The 

volatility of the portfolios based on shrinkage covariance matrices consistently decreases as the size of 

the portfolio increases, however, the results for the Sharpe ratio are mixed, decreasing for 𝑁 =

{200, 300} and then increasing again for 𝑁 = {400, 500}. The volatility of latent factor models is high 

for 𝑁 = {30, 50} and then becomes lower and stabilizes across different portfolio sizes. The Sharpe 

ratio for latent factors is highest for 𝑁 = 100, decreases when 𝑁 = {200, 300} and then increases again 

for 𝑁 = {400, 500}. Average monthly turnover steadily increases with the number of stocks in the 

portfolio, with shrinkage methods generating higher turnover than factor models based on linear 

dimensionality reduction methods and lower turnover than portfolios based on autoencoders.  

4.8. Performance of Approximate Factor Models 

In the analysis so far, we have considered exact factor models, where the residual covariance matrix is 

diagonal. In this Section we examine the forecasting accuracy and economic value of covariance 

matrices based on approximate factor models (AFM). In the three specifications that the residual 

covariance matrix is static (SFC, DFC and DBC) the residual covariance is estimated using the linear 

shrinkage estimator by Ledoit and Wolf (2004), while for the dynamic error covariance specification, 

the residual covariance is estimated using the DCC-NL by Engle, Ledoit and Wolf (2019) dynamic 

covariance estimator.  

Table 7 Forecast evaluation of the covariance matrices of approximate factor models 

This table reports the ability of the alternative covariance matrices to predict the out-of-sample realized 

covariance matrix based on four loss functions. Panel A reports the mean squared error (MSE) and mean 

absolute error (MAE), whereas the quasi-likelihood function (QLK) and asymmetric loss function 

(ASYM) can be found in Panel B. The average value of each measure over the out-of-sample period from 

January 1980 to December 2022 is reported. The results are presented for the sample estimator (Sample), 

linear shrinkage (LINS) and non-linear shrinkage (NLS) estimators, Wishart stochastic covariance 

(Wishart) and for four approximate factor model (AFM) covariance specifications: static factor covariance 

(SFC), dynamic factor covariance (DFC), dynamic beta covariance (DBC) and dynamic error covariance 

(DEC). The factor specifications are based on principal component analysis (PCA), partial least squares 

(PLS), sparse principal component analysis (SPCA), sparse partial least squares (SPLS), autoencoder 

(AEN) and denoising autoencoder (DAE). The statistical significance of the alternative covariance 

matrices compared to the LINS covariance benchmark is denoted by: *, **, and *** for significance at the 

10%, 5%, and 1% level, respectively. 

Panel A Mean squared error and mean absolute error 

 MSE MAE       

Sample 51.666 18.777       

LINS 51.972 19.139       

NLS 48.217 18.306       

Wishart 54.911 19.143             

 SFC DFC DBC DEC 

 MSE MAE MSE MAE MSE MAE MSE MAE 

PCA 45.613** 17.461** 48.314 17.813** 55.477 17.707** 41.483 13.958** 

PLS 45.477** 17.414** 48.205 17.696** 61.138 17.686 42.454 14.732** 



21 
 

SPCA 45.596** 17.458** 47.555* 17.710** 59.741 17.657** 41.194 13.946** 

SPLS 45.469** 17.413** 48.277 17.709** 61.033 17.671 43.223 14.712** 

AEN 45.614** 17.460** 50.095 18.036* 55.987 17.628 95.780 13.863** 

DAE 45.599** 17.457** 49.744 18.000* 55.494 17.635** 48.536 13.899* 

Panel B Quasi-likelihood function and asymmetric loss function 

 QLK ASYM       

Sample 21.810 3.488       

LINS 23.599 3.558       

NLS 24.965 3.247       

Wishart 23.328 3.818             

 SFC DFC DBC DEC 

 QLK ASYM QLK ASYM QLK ASYM QLK ASYM 

PCA 23.811* 2.898** 23.815 3.273 23.922 5.493 19.726 3.521 

PLS 24.017 2.901** 24.014 3.394 24.105** 8.040 19.944 3.269 

SPCA 23.800 2.894** 23.801 3.173 23.910 9.400 19.762 3.492 

SPLS 24.018 2.901** 24.016 3.391 24.105** 8.056 19.943 3.525 

AEN 23.799 2.896** 23.808 3.476 23.913 6.011 19.697 104.522 

DAE 23.800 2.894** 23.808 3.434 23.916 5.848 19.713 9.982 

 

Table 7 reports the results for the predictive accuracy of the approximate factor models. 

Comparing the performance of the AFMs with that of the EFMs (Table 1), we observe that the 

predictive accuracy in terms of MSE, MAE and ASYM worsens. There are some gains in terms of the 

QLK loss, however, they are not significant enough to lead to consistent significant outperformance 

relative to the LINS benchmark. Static factor covariance matrices significantly outperform the 

benchmark in terms of MSE and MAE, while the results for the dynamic specifications primarily exhibit 

significant outperformance for MAE when the factor covariance or error covariance are time varying. 

Dynamic error covariance matrices generate lower but insignificant QLK values than the benchmarks, 

while static factor covariances exhibit significant outperformance in terms of the ASYM measure. 

Table 8 Portfolio performance of approximate factor models based on standard deviation and Sharpe ratio 

This table documents monthly portfolio performance measured using the standard deviation (SD) and Sharpe 

ratio (SR), over the out-of-sample period from January 1980 to December 2022. The results are presented for the 

equally weighted portfolio (EW), value-weighted portfolio (VW) and minimum-variance portfolios with short-

selling constraints based on the sample estimator (Sample), linear shrinkage (LINS) and non-linear shrinkage 

(NLS) estimators, Wishart stochastic covariance (Wishart) and for four approximate factor model (AFM) 

covariance specifications: static factor covariance (SFC), dynamic factor covariance (DFC), dynamic beta 

covariance (DBC) and dynamic error covariance (DEC). The factor specifications are based on principal 

component analysis (PCA), partial least squares (PLS), sparse principal component analysis (SPCA), sparse 

partial least squares (SPLS), autoencoder (AEN) and denoising autoencoder (DAE). 

 SD SR       
EW 4.275 0.196       
VW 4.137 0.188       
Sample 3.501 0.212       
LINS 3.510 0.218       
NLS 3.450 0.219       
Wishart 3.736 0.210             

 SFC DFC DBC DEC 

 SD SR SD SR SD SR SD SR 

PCA 3.457 0.219 3.456 0.218 3.430 0.220 3.361 0.229 

PLS 3.449 0.220 3.454 0.218 3.420 0.221 3.468 0.226 

SPCA 3.457 0.219 3.458 0.217 3.429 0.221 3.442 0.229 

SPLS 3.449 0.220 3.454 0.218 3.420 0.221 3.422 0.240 

AEN 3.454 0.219 3.451 0.219 3.421 0.221 3.407 0.219 
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DAE 3.455 0.219 3.454 0.219 3.437 0.218 3.360 0.242 

 

The economic value of approximate factor models in terms of standard deviation and Sharpe ratio 

is reported in Table 8. Overall, exact factor models consistently outperform their approximate factor 

model counterparts in terms of both performance measures. The factor-based covariance matrices 

continue to outperform the EW and VW benchmarks, however, their performance becomes closer to 

that of the other covariance benchmarks, with the exception of portfolios based on dynamic error 

covariance matrices with latent factors estimated using SPLS and DAE.  

5. Conclusion 

Minimum-variance portfolios are frequently advocated by both academics and financial professionals, 

since they avoid the high estimation error associated with expected returns and have been shown to 

outperform competing strategies. Nevertheless, this investment strategy remains crucially dependent on 

the quality of the estimates of the covariance matrix, which are exacerbated for high-dimensional 

opportunity sets. In this paper we address this issue by imposing a factor structure to the covariance 

matrix and conduct a systematic evaluation of the performance and properties of factor-based 

minimum-variance portfolios. Furthermore, we enhance factor-based covariance matrix estimation, by 

considering latent factors derived from dimensionality reduction methods that induce sparsity or 

introduce non-linearities and specifications of the factor-based covariance matrix that allow its 

components to be time-varying.  

Overall, the results for the predictive accuracy based on two symmetric loss functions indicate 

that the majority of the factor models outperform several covariance benchmarks, while according to 

two asymmetric loss functions the improved performance of the factor models is due to the reduced 

degree of over predictions. From the economic evaluation of the covariance matrices based on the 

minimum-variance framework, we find that using factor-based covariance matrices can translate into 

economic gains for optimal portfolios. We find that the proposed models can lead to a statistically 

significant reduction in portfolio volatility and a significant increase in the Sharpe ratios relative to the 

EW and VW portfolios. When the factor-based allocations are compared to minimum-variance 

allocations based on alternative covariance benchmarks, the alternative strategies outperform the 

sample, linear shrinkage and Wishart stochastic covariance benchmarks, with the non-linear shrinkage 

estimator being a more difficult benchmark to outperform in terms of portfolio standard deviation. 

Factor-based allocations yield portfolios that require less frequent rebalancing, with weights that are 

less volatile and more diversified relative to other covariance matrix benchmarks.  
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